

# UPPER RAPPAHANNOCK RIVER BACTERIA TMDL DEVELOPMENT

Virginia Department of Environmental Quality
Rappahannock-Rapidan Regional Commission
Engineering Concepts, Inc.

FIRST PUBLIC MEETING October 11, 2006



#### QUESTIONS TO ANSWER

- What is the history of the watershed?
- Who/what is producing bacteria in the watershed?
- How much bacteria is being produced by sources in watershed?
- How is the bacteria reaching the stream?
- What source reductions are needed to meet the water quality standard?



#### TMDL DEVELOPMENT PROCESS

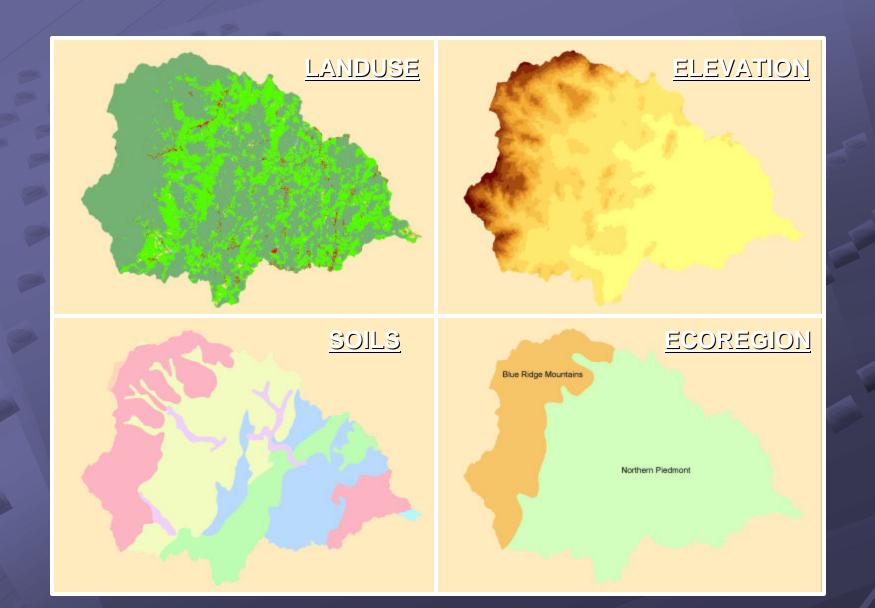
#### WATERSHED HISTORY

Characterize watershed and identify critical contamination conditions

#### • SOURCE ASSESSMENT

Identify and quantify pollutant sources

#### MODELING


Link pollutant sources to stream water quality

#### ALLOCATION

Develop and evaluate allocation scenarios



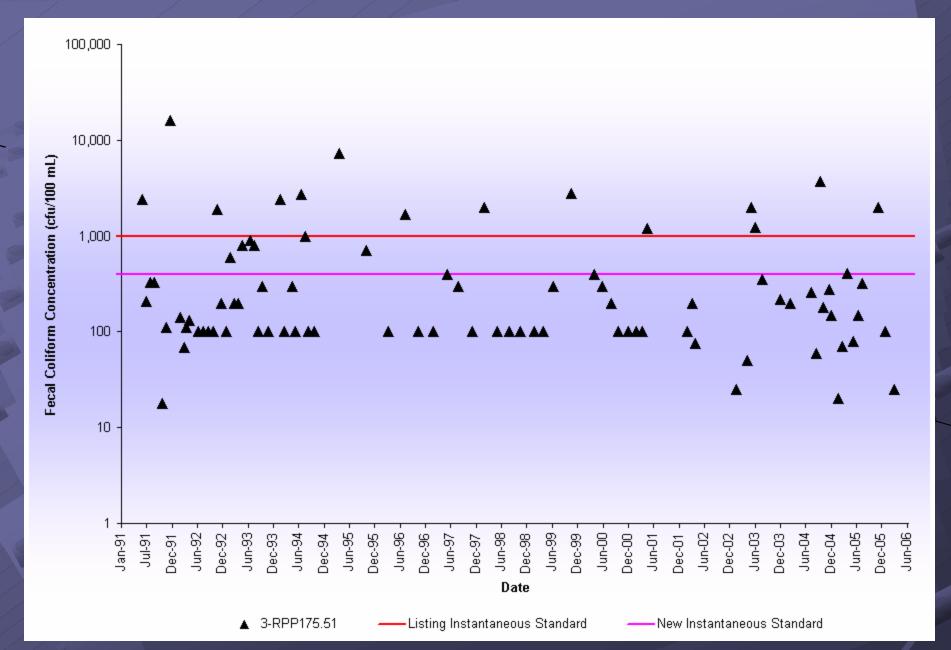
## WATERSHED CHARACTERISTICS





## WATERSHED CHARACTERISTICS

|                                  |                  | Land use     |             |        |       |  |  |  |
|----------------------------------|------------------|--------------|-------------|--------|-------|--|--|--|
| Impairment                       | Drainage<br>Size | Agricultural | Residential | Forest | Water |  |  |  |
|                                  | 3123             | (%)          | (%)         | (%)    | (%)   |  |  |  |
|                                  | (sq. mi.)        |              |             |        |       |  |  |  |
| Rappahannock River (VAN-E01R-03) | 76               | 30           | 1           | 68     | 1     |  |  |  |
| Rush River<br>(VAN-E05R-01)      | 15               | 20           | <1          | 79     | <1    |  |  |  |
| Hughes River<br>(VAN-E03R-01)    | 72               | 25           | <1          | 74     | <1    |  |  |  |
| Hazel River<br>(VAN-E04R-01)     | 125              | 28           | <1          | 71     | <1    |  |  |  |



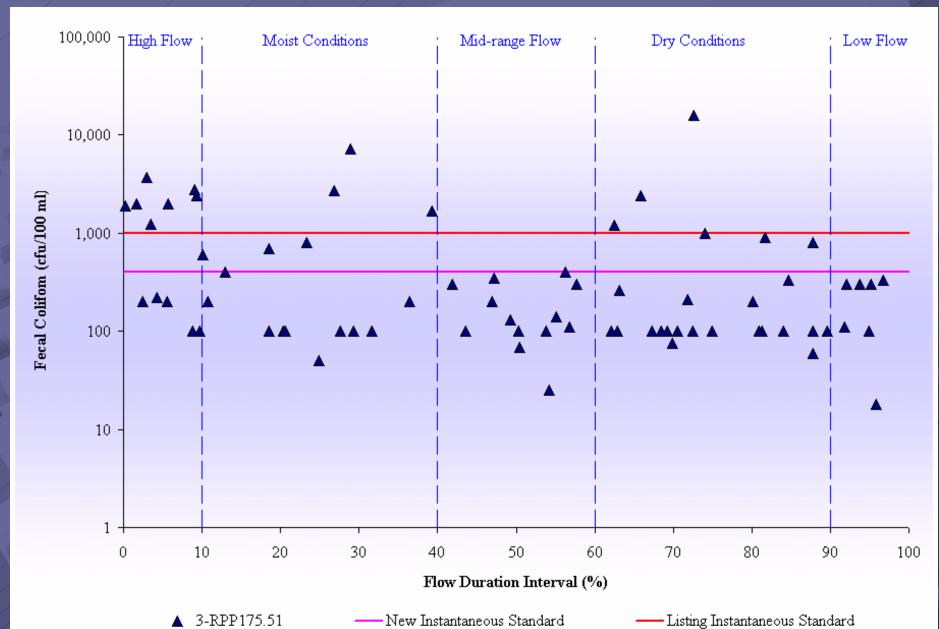

#### WATERSHED HISTORY

- Identify critical contamination conditions
  - Timeseries of bacteria concentration
  - Seasonality
  - Bacteria concentration versus flow



#### BACTERIA TIMESERIES





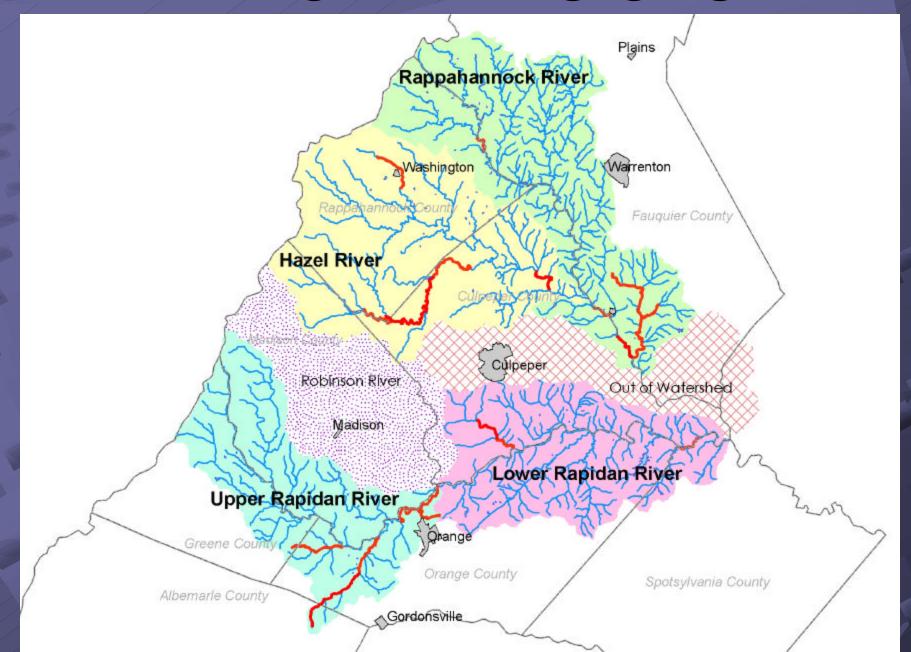

#### BACTERIA SEASONALITY





#### BACTERIA VS. FLOW





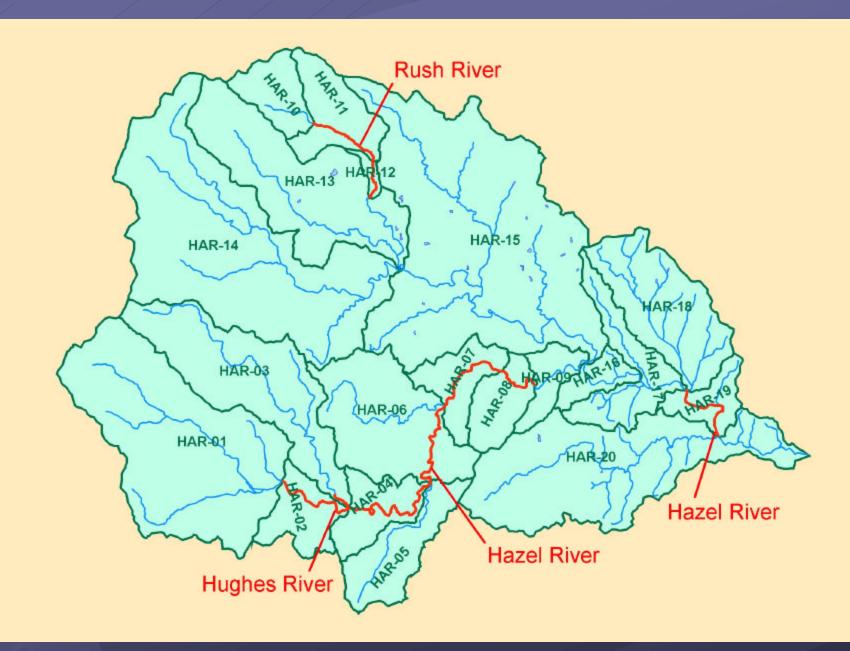

## SOURCE ASSESSMENT

| Source Category    | Source / Animal Type   |
|--------------------|------------------------|
|                    | Permitted Discharges   |
|                    | Sanitary Sewer         |
| Liver are and Data | Straight Pipes         |
| Human and Pets     | Failing Septic Systems |
|                    | Biosolids Applications |
|                    | Dogs / Cats            |
|                    | Dairy & Beef Cattle    |
|                    | Horses                 |
| Agricultural       | Sheep                  |
|                    | Chicken                |
|                    | Turkey                 |
|                    | Deer                   |
|                    | Raccoon                |
|                    | Muskrats               |
| Wildlife           | Beavers                |
|                    | Turkeys                |
|                    | Geese                  |
|                    | Ducks                  |



## MODEL REGIONS

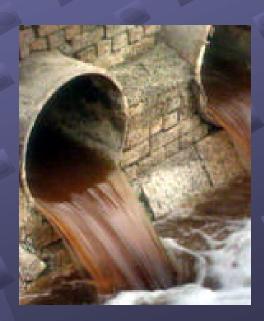





#### RAPPAHANNOCK SUBWATERSHEDS






#### HAZEL RIVER SUBWATERSHEDS





#### PERMITTED POINT SOURCES

- Virginia Pollution Discharge Elimination System
  - Types municipal, industrial, general
  - Categories major, minor, general







## PERMITTED DISCHARGES

|                                  | Fac       | ility Type (# | Design Flow (MGD) |         |         |
|----------------------------------|-----------|---------------|-------------------|---------|---------|
| Impairment                       | Municipal | Industrial    | General           | Minimum | Maximum |
| Rappahannock River (VAN-E01R-03) | 0         | 0             | 0                 | N/A     | N/A     |
| Rush River<br>(VAN-E05R-01)      | 0         | 1             | 0                 | 0.006   | 0.006   |
| Hughes River<br>(VAN-E03R-01)    | 0         | 0             | 0                 | N/A     | N/A     |
| Hazel River<br>(VAN-E04R-01)     | 1         | 0             | 0                 | 0.015   | 0.015   |



#### HUMAN SOURCES

- Population, houses, onsite treatment system based on U.S. Census Bureau, municipality, & E-911 data
- Sanitary sewer
  - Loading type
    - Overflows & exfiltration
  - Land-applied / direct deposition
    - Loading type
    - Proximity to stream







#### HUMAN SOURCES

- Failed septic systems
  - Failure to soil surface throughout year
  - Failure rate based on age of home
- Straight pipes
  - Direct continuous input to stream
  - Based on proximity to stream and house age
- Biosolids applications
  - Records kept by Virginia Department of Health
  - Land-applied



Failed Septic System



Straight Pipe



#### PET SOURCES

- American Veterinary Medical Association estimates
   0.53 dogs and 0.60 cats per household
- Potentially updated through veterinarians, animal control, treasurer, and residents
- Population = population density \* houses
- Land-applied







## HUMAN AND PET SOURCES

| Impairment                       | Human Pop.<br>(#) | Housing Unit (#) | Dogs<br>(#) | Cats<br>(#) |
|----------------------------------|-------------------|------------------|-------------|-------------|
| Rappahannock River (VAN-E01R-03) | 2,683             | 1,023            | 542         | 614         |
| Rush River<br>(VAN-E05R-01)      | 377               | 180              | 95          | 108         |
| Hughes River<br>(VAN-E03R-01)    | 1,745             | 757              | 401         | 454         |
| Hazel River<br>(VAN-E04R-01)     | 5,725             | 2,050            | 1,087       | 1,230       |



#### LIVESTOCK SOURCES

- Population
  - Virginia Agricultural Statistics
  - Confined Animal Feeding Operation
  - Consultation with SWCD, VADCR, VCE, NRCS, and producers
  - Windshield survey
- Distribution of waste
  - Confined: waste collected and spread
  - Pastured: land-applied
  - Stream access: direct deposition
  - Imported sources
- Seasonal varying applications







### LIVESTOCK SOURCES

| Impairment                          | Beef*<br>(#) | Dairy+<br>(#) | Horse<br>(#) | Sheep<br>(#) | Turkey<br>(#) | Chicken<br>(#) |
|-------------------------------------|--------------|---------------|--------------|--------------|---------------|----------------|
| Rappahannock River<br>(VAN-E01R-03) | 2,106        | 0             | 776          | 29           | 0             | 0              |
| Rush River<br>(VAN-E05R-01)         | 288          | 0             | 106          | 4            | 0             | 0              |
| Hughes River<br>(VAN-E03R-01)       | 1,632        | 0             | 599          | 22           | 0             | 0              |
| Hazel River<br>(VAN-E04R-01)        | 3,206        | 0             | 1,176        | 43           | 0             | 0              |

<sup>\*</sup> Cow/calf pairs; + Milking herd



#### WILDLIFE SOURCES

- Populations based on habitat and population densities provided by Virginia Department of Game and Inland Fisheries biologists
- Distribution of waste based on habitat
  - Land-applied
  - Direct deposition to stream
- Seasonal variations based on migration patterns and food sources









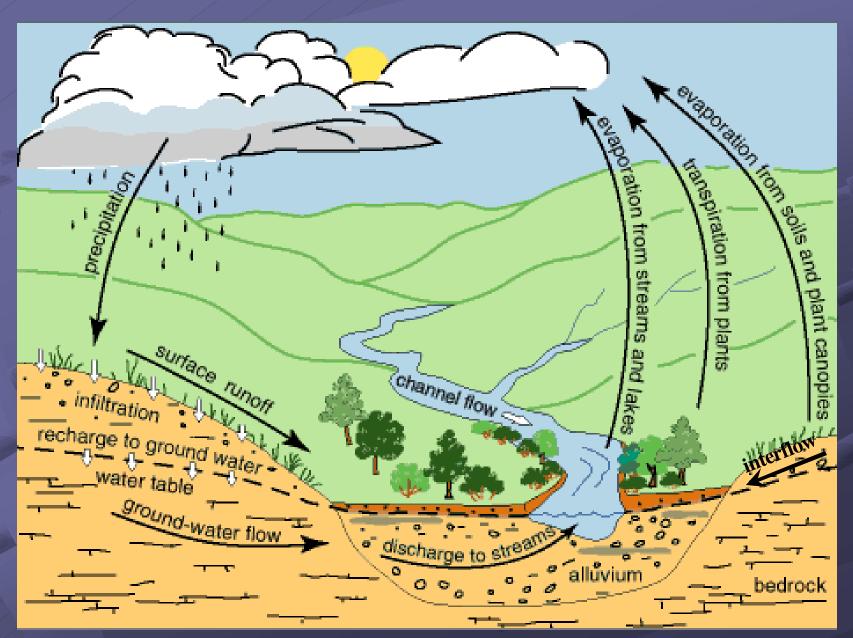
## WILDLIFE SOURCES

| Impairment                          | Deer<br>(#) | Raccoon<br>(#) | Muskrat<br>(#) | Beaver<br>(#) | Geese<br>(#) | Duck<br>(#) | Turkey<br>(#) |
|-------------------------------------|-------------|----------------|----------------|---------------|--------------|-------------|---------------|
| Rappahannock River<br>(VAN-E01R-03) | 1,583       | 1,752          | 3,837          | 198           | 251          | 126         | 152           |
| Rush River<br>(VAN-E05R-01)         | 448         | 327            | 695            | 38            | 51           | 26          | 36            |
| Hughes River<br>(VAN-E03R-01)       | 1,367       | 1,454          | 3,539          | 163           | 237          | 120         | 92            |
| Hazel River<br>(VAN-E04R-01)        | 2,917       | 2,835          | 6,292          | 318           | 414          | 209         | 195           |



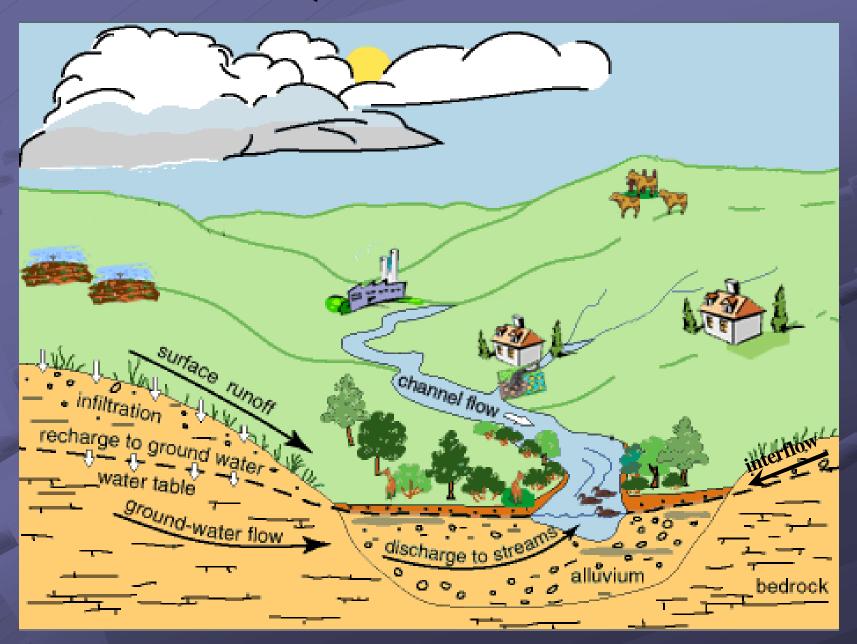
#### MODELING

- Link pollutant sources to stream water quality
- Mathematically represent processes that are occurring in the watershed
- Processes
  - Hydrology water balance
  - Water quality pollutant fate and transport
- Accuracy Evaluation
  - Based on observed data
    - Flow: USGS gauge = model output
    - Bacteria: VADEQ station = model output




#### MODELING

- Hydrologic Simulation Program Fortran
  - Developed by United States Geologic Survey
  - Seasonal patterns in climatic data
  - Simulates point and non-point sources
  - Temporal variations in pollutant loadings




#### HYDROLOGIC MODELING





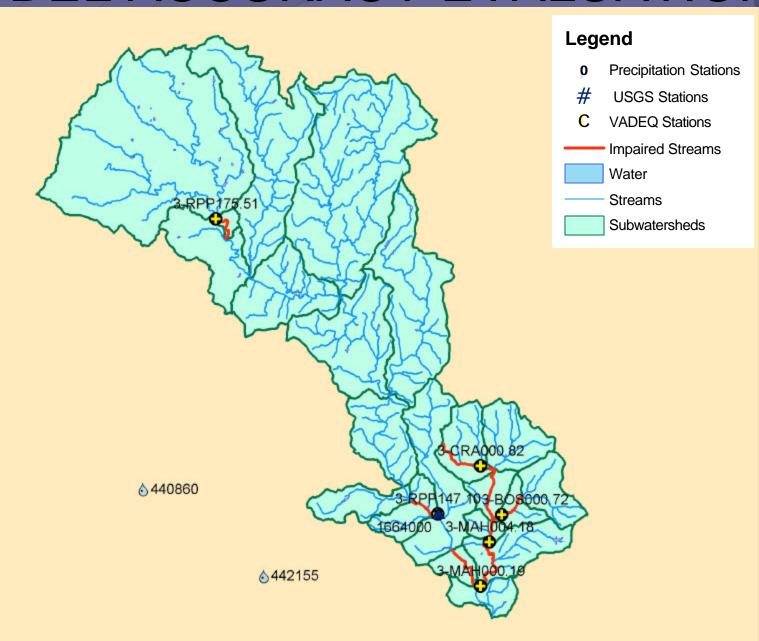
#### WATER QUALITY MODELING





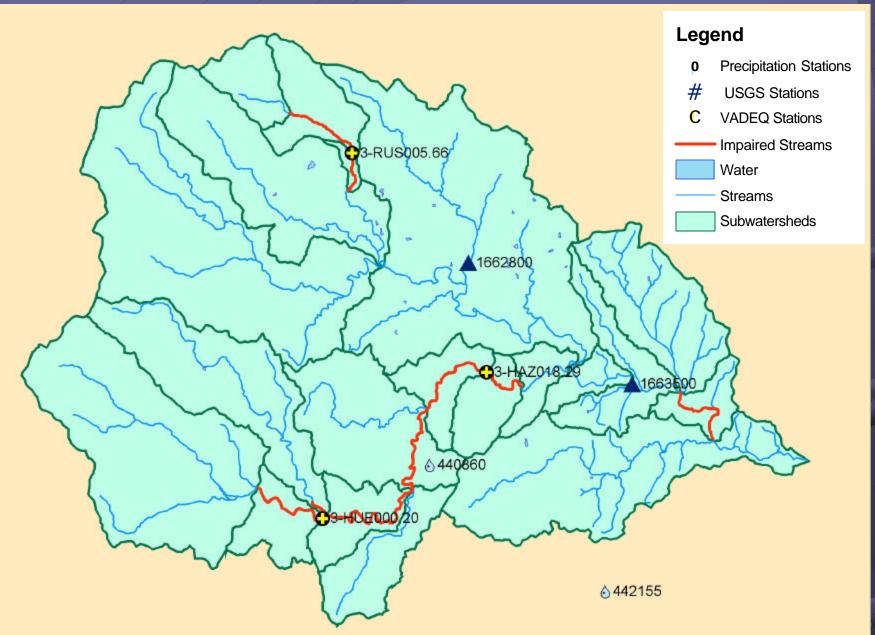
# HYDROLOGIC MODELING COMPONENTS

- Climatic data
- Land use
- Topography
- Soils
- Stream channel characteristics
- Point source discharge / withdrawal




# WATER QUALITY MODELING COMPONENTS

- Sources
  - Fecal production
  - Fecal coliform densities
  - Fecal coliform distribution
- Delivery mechanisms
  - Direct
  - Land-applied
- Temporal variation




#### MODEL ACCURACY EVALUATION





#### MODEL ACCURACY EVALUATION





### PRECIPITATION STATIONS

| COOPID | Station Name          | County       | Timestep |
|--------|-----------------------|--------------|----------|
| 442159 | Culpeper Riverside CG | Culpeper     | Hourly   |
| 446712 | Piedmont Research St  | Orange       | Hourly   |
| 442155 | Culpeper              | Culpeper     | Daily    |
| 440860 | Boston 4 SE           | Culpeper     | Daily    |
| 443466 | Gordonsville 3 S      | Louisa       | Daily    |
| 445050 | Louisa                | Louisa       | Daily    |
| 440720 | Big Meadows           | Madison      | Daily    |
| 445150 | Madison               | Madison      | Daily    |
| 444692 | Lake of the Woods     | Orange       | Daily    |
| 443462 | Gordonsville FAA AP   | Orange       | Daily    |
| 447904 | Somerset              | Orange       | Daily    |
| 443192 | Fredricksburg Natl Pk | Spotsylvania | Daily    |



#### MONITORING STATIONS

| Station ID  | Waterbody          | Station Type | Agency |
|-------------|--------------------|--------------|--------|
| 01664000    | Rappahannock River | Flow         | USGS   |
| 01662800    | Battle Run         | Flow         | USGS   |
| 01663500    | Hazel River        | Flow         | USGS   |
| 3-RPP175.51 | Rappahannock River | Bacteria     | VADEQ  |
| 3-RUS005.66 | Rush River         | Bacteria     | VADEQ  |
| 3-HUE000.20 | Hughes River       | Bacteria     | VADEQ  |
| 3-HAZ018.29 | Hazel River        | Bacteria     | VADEQ  |



#### ALLOCATION

- 1. Calculate existing loads for all sources
- 2. Create load reductions scenarios controlling anthropogenic sources first
- 3. Run model with scenarios
- 4. Calculate water quality standard (WQS) violation rate
- 5. Select scenario with 0% WQS violation rate
- 6. Calculate allocation loads for all sources



#### **EXAMPLE ALLOCATION**

| Source                   | Existing Condition<br>Load<br>(cfu/yr) |
|--------------------------|----------------------------------------|
| <b>Direct Deposition</b> |                                        |
| Straight Pipes           | 8.09E+13                               |
| Livestock                | 1.76E+12                               |
| Wildlife                 | 5.93E+13                               |
| Total                    | 1.58E+14                               |
| Land-based               |                                        |
| Residential              | 1.61E+14                               |
| Cropland                 | 1.16E+13                               |
| Pasture                  | 9.53E+15                               |
| Forest                   | 2.95E+14                               |
| Total                    | 9.99E+15                               |

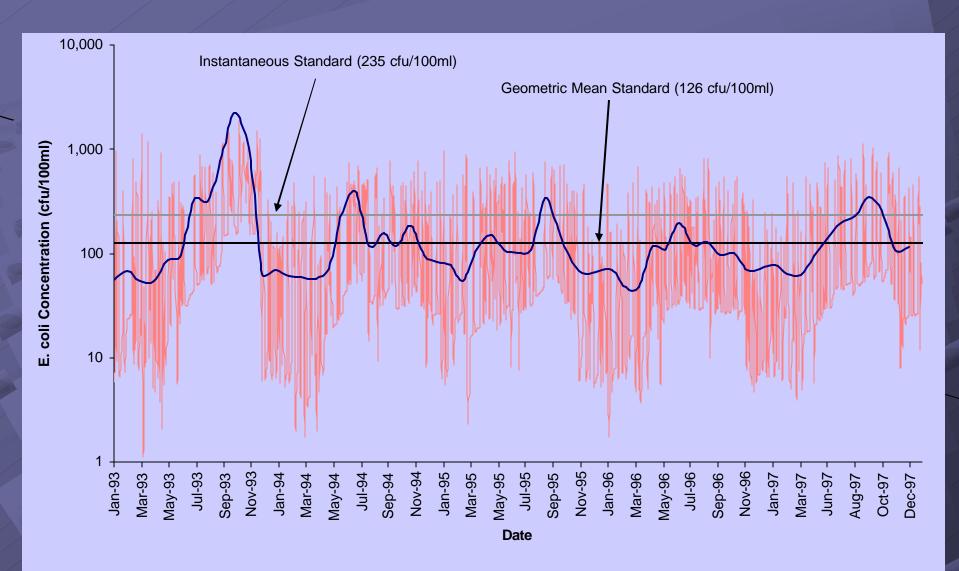


## EXAMPLE ALLOCATION SCENARIOS

| Scenario | Percent Reduction in Fecal Coliform Loading From Existing Conditions |                 |                |          |         |             | % Violation of <i>E. coli</i><br>Standard |                   |               |
|----------|----------------------------------------------------------------------|-----------------|----------------|----------|---------|-------------|-------------------------------------------|-------------------|---------------|
| Number   | Straight<br>Pipes                                                    | Livestock<br>DD | Wildlife<br>DD | Cropland | Pasture | Residential | Forest                                    | Geometric<br>Mean | Instantaneous |
| 0        | 0                                                                    | 0               | 0              | 0        | 0       | 0           | 0                                         | 75                | 35            |
| 1        | 100                                                                  | 75              | 0              | 0        | 0       | 0           | 0                                         | 50                | 33            |
| 2        | 100                                                                  | 100             | 0              | 25       | 25      | 25          | 0                                         | 0                 | 10            |
| 3        | 100                                                                  | 100             | 0              | 50       | 50      | 50          | 0                                         | 0                 | 0             |

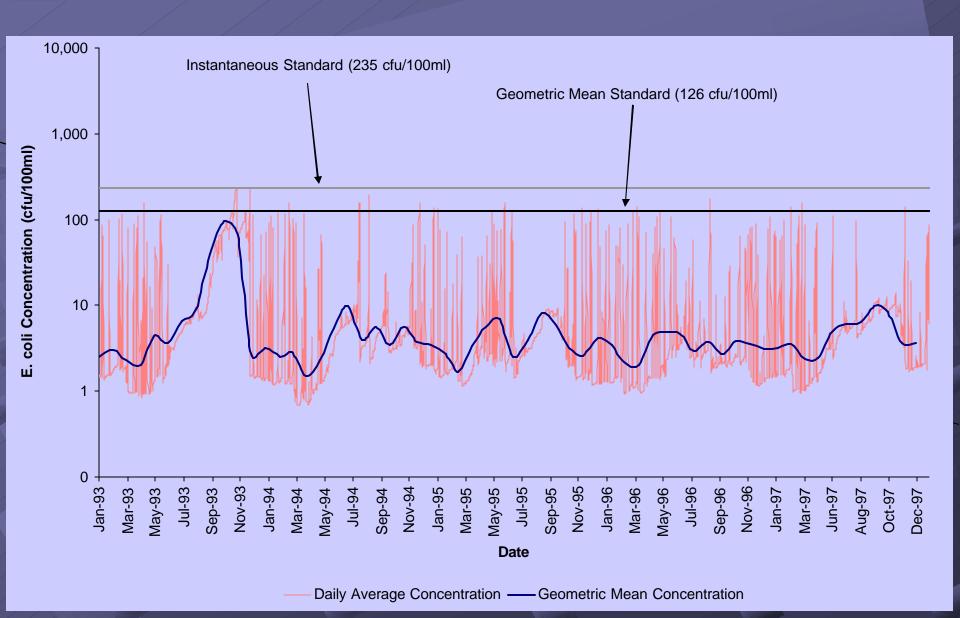


#### **EXAMPLE ALLOCATION**


| Source            | Existing<br>Condition<br>Load<br>(cfu/yr) |
|-------------------|-------------------------------------------|
| Direct Deposition | on                                        |
| Straight Pipes    | 8.09E+13                                  |
| Livestock         | 1.76E+12                                  |
| Wildlife          | 5.93E+13                                  |
| Total             | 1.58E+14                                  |
| Land-based        |                                           |
| Residential       | 1.61E+14                                  |
| Cropland          | 1.16E+13                                  |
| Pasture           | 9.53E+15                                  |
| Forest            | 2.95E+14                                  |
| Total             | 9.99E+15                                  |

|   | Scenario 3<br>Reduction<br>(%) |
|---|--------------------------------|
|   |                                |
| - | 100                            |
|   | 100                            |
|   | 0                              |
|   |                                |
| Ì |                                |
| Ì | 50                             |
|   | 50                             |
|   | 50                             |
|   | 0                              |
|   |                                |






#### **EXAMPLE EXISTING CONDITIONS**





#### EXAMPLE ALLOCATION CONDITIONS





#### TIMELINE

- POLLUTANT SOURCE INVENTORY
  - Revisions based on feedback
  - Biosolids, straight pipes, failing septic systems estimates
- MODELING
  - Hydrology calibration and validation
  - Water quality calibration and validation

#### SECOND TAC MEETING

Presentation of modeling results and revisions to pollutant source inventory

- ALLOCATION DEVELOPMENT
  - Scenario development, assessment of scenarios, selection of allocation

#### THIRD TAC MEETING

Presentation of allocation scenarios

#### FINAL PUBLIC MEETING

Presentation of pollutant source inventory revisions, model results, allocation scenarios, and draft TMDL document



## FOR INFORMATION, CONTACT:

- Katie Conaway
   VADEQ Northern Virginia Regional Office
   (703) 583–3804
   mkconaway@deq.virginia.gov
- Chris Conti Rappahannock-Rapidan Regional Commission (540) 829–7450 clconti@rrregion.org
- Byron Petrauskas
   Engineering Concepts, Inc.
   (540) 473–1253
   bpetrauskas@engineeringconcepts.com